Mr. Reznick's Kilowatt Caper - Solutions

The students should start by reading The Case of the Kilowatt Caper. This story will introduce the concepts and outline an approach to solving the problems on the worksheet.

For younger students, you may want to solve the problems as a class instead of individually.

Problem 1: 10,000 watts $/ 1000=10 \mathrm{~kW} 5$ hours per day x 3 days $=15$ hours
$10 \mathrm{~kW} \times 15$ hours $=150 \mathrm{kWh}$
$150 \mathrm{kWh} \mathrm{x} \$.10=\$ 15.00$
Answer: Grandma spent $\$ 15.00$ for the electricity to cook Thanksgiving dinner.

Problem 2: Regular bulbs
$60 \mathrm{~W} / 1000=.06 \mathrm{~kW}$
10 hours per day x 365 days $=3,650$ hours
$.06 \mathrm{~kW} \times 3,650$ hours $=219 \mathrm{kWh} \quad 219 \mathrm{kWh} x \$.10=\$ 21.90 /$ year each bulb
$\$ 21.90 \times 100$ bulbs $=\$ 2,190.00 /$ year for 100 bulbs

CFL Bulbs

20 watts $/ 1000=.02 \mathrm{~kW} \quad 10$ hours per day x 365 days $=3,650$ hours
$.02 \mathrm{~kW} \times 3,650$ hours $=73 \mathrm{kWh} \quad 73 \mathrm{kWh} \times \$.10=\$ 7.30 /$ year each bulb
$\$ 7.30 \times 100$ bulbs $=\$ 730.00 /$ year for 100 bulbs
$\$ 2,190.00-\$ 730.00=\$ 1,460.00$
Answer: Batman would save $\mathbf{\$ 1 , 4 6 0 . 0 0}$ per year by using CFL bulbs.

Problem 3: PS2

30 watts $/ 1000=.03 \mathrm{~kW} \quad .03 \mathrm{~kW} x 100$ hours $=3 \mathrm{kWh}$
$3 \mathrm{kWh} x \$.10=\$ 0.30$
Xbox 360
165 watts $/ 1000=.165 \mathrm{~kW} \quad .165 \mathrm{~kW}$ x 100 hours $=16.5 \mathrm{kWh}$
$16.5 \mathrm{kWh} x \$.10=\$ 1.65$
$\$ 1.65-\$ 0.30=\$ 1.35$
Answer: It would cost an extra \$1.35 to play the Xbox 360.

Problem 4: 100 watts $/ 1000=.1 \mathrm{~kW}$ to watch TV
Now work back from the cost of a can of Coke:
$\$.050 / \$ 0.10$ (cost of electricity) $=5 \mathrm{kWh}$
$5 \mathrm{kWh} / .1 \mathrm{~kW}$ (energy for watching TV) $=50$ hours
Answer: Jenna could watch TV for 50 hours.

